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The rheological properties of a cell suspension may play an important role in the flow
field generated by populations of swimming micro-organisms (e.g. in bioconvection).
In this paper, a swimming micro-organism is modelled as a squirming sphere with
prescribed tangential surface velocity, in which the centre of mass of the sphere
may be displaced from the geometric centre (bottom-heaviness). Effects of inertia
and Brownian motion are neglected, because real micro-organisms swim at very
low Reynolds numbers but are too large for Brownian effects to be important. The
three-dimensional movement of 64 identical squirmers in a simple shear flow field,
contained in a cube with periodic boundary conditions, is dynamically computed,
for random initial positions and orientations. The computation utilizes a database of
pairwise interactions that has been constructed by the boundary element method. The
restriction to pairwise additivity of forces is expected to be justified if the suspension is
semi-dilute. The results for non-bottom-heavy squirmers show that the squirming does
not have a direct influence on the apparent viscosity. However, it does change the
probability density in configuration space, and thereby causes a slight decrease in
the apparent viscosity at O(c2), where c is the volume fraction of spheres. In the
case of bottom-heavy squirmers, on the other hand, the stresslet generated by the
squirming motion directly contributes to the bulk stress at O(c), and the suspension
shows strong non-Newtonian properties. When the background simple shear flow is
directed vertically, the apparent viscosity of the semi-dilute suspension of bottom-
heavy squirmers becomes smaller than that of inert spheres. When the shear flow is
horizontal and varies with the vertical coordinate, on the other hand, the apparent
viscosity becomes larger than that of inert spheres. In addition, significant normal
stress differences appear for all relative orientations of gravity and the shear flow, in
the case of bottom-heavy squirmers.

1. Introduction
The size of individual micro-organisms is often much smaller than that of the

flow field of interest, in an oceanic plankton bloom for instance. In such cases, the
suspension of micro-organisms is modelled as a continuum in which the variables are
volume-averaged quantities (Pedley & Kessler 1992; Metcalfe, Pedley & Thingstad
2004). Continuum models for suspensions of swimming micro-organisms have been
proposed for the analysis of phenomena such as bioconvection (e.g. Childress,
Levandowsky & Spiegel 1975; Pedley & Kessler 1990; Hillesdon, Pedley & Kessler
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1995; Bees & Hill 1998; Metcalfe & Pedley 2001). However, the continuum models
proposed so far are restricted to dilute suspensions, in which cell–cell interactions
are negligible. If one wishes to analyse larger cell concentrations, for example in the
dense falling plumes that form part of bioconvection patterns (Kessler et al. 1994;
Metcalfe & Pedley 2001), it will be necessary to consider the interactions between
micro-organisms. Then the particle stress tensor, as well as the velocities of the micro-
organisms and the diffusion tensor, in the continuum model will need to be replaced
by improved expressions.

In the ocean, the volume fraction of micro-organisms is in general small. Even in
red tides, which are caused by more than 200 kinds of phytoplankton, the minimum
quantitative standard to define a red tide is approximately 1000 cells per millilitre for
rather large flagellates at a diameter of about 30 µm. This density corresponds to a
volume fraction of about 0.001 %. However, the volume fraction can be much greater
in particular circumstances, for example near an air interface. On the laboratory
scale, much higher concentrations are often used. For example, Kessler has used
algal cells of the genera Dunaliella and Chlamydomonas in his experiments (Kessler
1985a, 1985b, 1986a, 1986b). These have a mean diameter in the range 10–20 µm.
The average volume fraction used in Kessler’s experiments was about 0.1 %, but the
suspension became much denser locally because of the migration of cells.

Recently Dombrowski et al. (2004) have reported a mesoscale structure in a dense
suspension of Bacillus subtilis, with a volume fraction up to 30 %. In such a dense
suspension, it is observed that a B. subtilis cell tends to swim in the same direction as
its neighbours, and this generates a flow pattern larger than the scale of an individual
cell but smaller than the scale of the container used in the experiment. The mesoscale
structure changes its direction randomly in a manner reminiscent of turbulence, so
Dombrowski et al. named this phenomenon slow turbulence. Mendelson et al. (1999)
also observed a mesoscale motion of whorls and jets generated by B. subtilis in a thin
water film above an agar gel plate.

In all these examples, cell–cell interactions change the swimming motions of
individual cells and presumably, therefore, also affect the rheological properties of a
suspension of cells. Since the volume fractions of suspensions of plankton, as opposed
to the above bacterial experiments, are generally not very great, the bulk effects of
cell–cell interactions are likely to be moderate and the assumption of semi-diluteness
is reasonable.

The model micro-organism used in this paper is the spherical squirmer used by
Ishikawa, Simmonds & Pedley (2006) in an investigation of all possible hydrodynamic
interactions between pairs of cells. Details of a squirmer were given in that earlier
paper, so only a brief explanation will be made here. A squirmer has a spherical
shape, with prescribed surface tangential velocities given by equation (2.4) below. It
is assumed to be neutrally buoyant, because the sedimentation velocities for typical
aquatic micro-organisms are much less than the swimming speeds, which range up to
several hundred µm s−1. The centre of buoyancy of the sphere may not coincide with
its geometric centre. The model micro-organism is, therefore, force-free but may not
be torque-free. The Reynolds number based on the swimming speed and the radius
of individuals is usually less than 10−2, so the flow field around the micro-organisms
is assumed to be Stokes flow. Brownian motion is not taken into account, because
typical micro-organisms are too large for Brownian effects to be important. The
model of a squirmer was first proposed by Lighthill (1952), and his analysis was then
extended by Blake (1971) and by Felderhof & Jones (2004). A particularly simple
way of calculating the swimming speed was given by Stone & Samuel (1996). The
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model has also been used by Magar, Goto & Pedley (2003) to analyse nutrient uptake
properties of a solitary squirmer.

For any concentration of particles, there is a relation between the deviatoric part of
the bulk stress and the conditions at the surfaces of individual particles. This relation
was derived by Batchelor (1970) as

Σ = IT + 2µE + Σ (p), (1.1)

where IT stands for an isotropic term, µ is the viscosity and E is the bulk rate of
strain tensor. Σ (p) is the particle bulk stress, and by using the volume, rather than
ensemble, average the particle bulk stress caused by force- and torque-free particles
in a fluid occupying volume V can be expressed as

Σ (p) =
1

V

∑
S, (1.2)

where S is the stresslet of a single particle and the sum is over all particles. The
stresslet is defined to give no isotropic contribution for rigid particles as (Batchelor &
Green 1972b)

S =

∫
Ap

[
1
2

{(σ · n) x + x (σ · n)} − 1
3
x · σ · nI − µ (un + nu)

]
dA, (1.3)

where σ is the stress tensor and u is the velocity. The surface of each particle is
defined as Ap with an outward normal vector n. The stresslet for a solitary squirmer
(Ssol ) was shown by Ishikawa et al. (2006) to be

Ssol =
4π

3
µa2(3 ee − I)B2, (1.4)

where a is the radius, e is the orientation vector of the squirmer and Bn is the nth
mode of the surface squirming velocity; see (2.4). This stresslet gives the first-order
correction to the bulk stress in terms of the volume fraction c. That axisymmetric
swimming micro-organisms would generate a stresslet of this form was also noted by
Pedley & Kessler (1990) and by Hatwalne et al. (2004).

The next term in the asymptotic expression for the particle bulk stress in terms of
c is of O(c2), as shown by Batchelor & Green (1972a, b), who were able to provide a
method of calculating this term for non-Brownian hard spheres in a simple straining
flow field. The critical function here was the conditional probability density function
that the spheres are in a given configuration ζN given that there is an additional
sphere centred at x0, P (ζN | x0) (N particles are assumed to be in the volume V ).
If one applies this method to a suspension of squirmers, one needs to introduce
the conditional probability that N squirmers are in a configuration ζ ′

N given that
there is an additional squirmer centred at x0 with orientation vector e0, denoted by
P (ζ ′

N | x0, e0). The correction to the particle stress is then

1

N!

∫
{S(x0, e0, ζ

′
N ) − Ssol}P (ζ ′

N | x0, e0) dζ ′
N, (1.5)

where S(x0, e0, ζ
′
N ) is the stresslet of the squirmer centred at x0 with the orientation of

e0, while the other N squirmers are in the configuration ζ ′
N . The governing equation

for the probability density function is given by a Fokker–Planck equation with zero
diffusion, and it was analytically solved by Batchelor & Green (1972b) for the inert
sphere case. Rather than replicating this calculation for a suspension of squirmers, we
will use a completely different method to solve the next order effect on the particle
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bulk stress. This is because solving the Fokker–Planck equation with zero diffusion
presents a number of difficulties.

(a) The Fokker–Planck equation for the probability density of two squirmers
depends on the relative position and the orientations of the two squirmers and,
therefore, it becomes a nine-dimensional function instead of the three-dimensional
function required for inert spheres.

(b) Even the Fokker–Planck equation for the probability density of two inert spheres
could not be solved when the background flow is a simple shearing motion because
of the existence of closed trajectories (Batchelor & Green 1972b).

(c) Analytical results for the Fokker–Planck equation with zero diffusion are not
available and numerical methods to deal strictly with zero diffusion are not available
either.

A lot of work has been done to analyse the rheological properties of a suspension
of inert spheres in a Stokes flow regime, a field that was pioneered by Batchelor
(1970). Brady and his colleagues have calculated the particle stress tensor in a simple
shear flow and in a pressure-driven flow by using Stokesian-dynamics simulations
(Brady & Bossis 1988; Nott & Brady 1994). Numerical methods for Stokesian-
dynamics simulations of a finite number of particles are explained by Durlofsky,
Brady & Bassis (1987), and those for an infinite number of particles are explained
by Brady et al. (1988). Here we use an early version of Stokesian dynamics that
was also proposed by Brady, based on pairwise additivity in constructing a grand
resistance matrix (Brady & Bossis 1985; Bossis & Brady 1984). This method is
suitable for a semi-dilute suspension, in which most of the interactions are pairwise,
and is easy to extend to a suspension of squirmers. The pairwise additivity is an
approximation, but it is expected to be justified if the particle volume fraction is not
too large (defining semi-dilute). Because the contribution of a solitary particle to the
bulk stress is the order of c, the contribution of two-particle interactions is of order
c2, and the contribution of interactions between three or more particles is of order
c3 (Batchelor & Green 1972b). We seek to calculate the O(c) and O(c2) terms. The
details of our numerical methods will be explicitly described in § 2. We use the term
semi-dilute because the suspension investigated in this study is not dilute enough to
neglect interactions between particles nor dense enough that many-body interactions
cannot be approximated in a pairwise additive fashion.

Hydrodynamic interactions between micro-organisms have been investigated by
other researchers (Guell et al. 1988; Ramia, Tullock & Phan-Thien 1993; Nasseri &
Phan-Thien 1997; Lega & Passot 2003; Jiang, Osborn & Menevean 2002), but none
of them studied two micro-organisms in near-contact. Mehandia & Nott (2004)
have simulated two-dimensional collective motions of 80 model micro-organisms
by assuming that the model has a spherical shape with a constant force dipole.
The assumption of a constant force dipole is acceptable when the distance between
particles is large enough. When two of them are in near-contact, however, this
assumption may not be true, because the stresslet is the resultant of the change in
the velocity field and should be obtained as part of the solution to the problem. The
effect of the interaction between micro-organisms on the rheological properties of
the suspension has also not been discussed before. To perform such an investigation,
it is sensible to begin by considering passive hydrodynamic interactions, in which
the micro-organisms do not actively react to the presence of others. Throughout this
paper the squirming motion of a sphere’s surface is assumed to be invariant.

In this paper, the three-dimensional movement of 64 identical squirmers in a
simple shear flow field, contained in a cube with periodic boundary conditions, is
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dynamically computed, for random initial positions and orientations. In order to
include the cell–cell interactions, we use a database of pairwise interactions that has
previously been constructed by a boundary element method (Ishikawa et al. 2006).
In § 3, the rheological properties of a semi-dilute suspension of non-bottom-heavy
squirmers will be investigated. When squirmers are non-bottom-heavy, there is no
preferred direction. Thus the average stresslet of the squirmers should be isotropic,
which results in no direct contribution to the apparent viscosity of the suspension.
The interaction between squirmers, however, changes the probability density of the
configuration, and eventually it changes the apparent viscosity indirectly. The effect
of volume fraction and mode of squirming on the apparent viscosity will be discussed
in this section. In § 4, the rheological properties of a semi-dilute suspension of bottom-
heavy squirmers will be investigated. When squirmers are bottom-heavy, gravity exerts
an external torque, which generates an asymmetric contribution to the bulk stress
tensor. Therefore, the bulk stress tensor shows strong non-Newtonian behaviour.
Moreover, bottom-heavy squirmers tend to swim upwards, so there is a preferred
direction. The squirmers’ stresslet in this case is no longer isotropic, which also results
in a direct contribution to the apparent viscosity and normal stress differences of the
suspension. The orientation of the background shear flow relative to gravity becomes
important. The effect of volume fraction, mode of squirming and the strength of the
bottom-heaviness on the bulk stress tensor will be discussed in this section.

2. Numerical methods
The dynamic simulation method, based on pairwise additivity in constructing a

grand resistance matrix, can be found in Brady & Bossis (1985) and Bossis & Brady
(1984). The numerical method used in this study is similar to theirs, but we had
to modify the method in order to deal with a suspension of squirmers instead of a
suspension of inert spheres. We will mainly use the same notation as in Brady &
Bossis (1985).

In the absence of Brownian motion and at negligible particle Reynolds number,
the equation of motion for N identical squirmers suspended in a Newtonian solvent
undergoing a bulk linear shear flow can be written as

−R · U∗ + Φ : E + Fsq + Ftor + Frep = 0. (2.1)

Here U∗ is a vector of dimension 6N containing the translational-rotational velocities
of the N particles relative to the bulk fluid’s velocities evaluated at the squirmer
centre. R is the grand resistance matrix of dimension 6N × 6N , which is constructed
by a pairwise superposition of exact results for two inert spheres. The 6N × 3 × 3
matrix Φ gives the force–torque on the squirmers due to the bulk shear flow, which
is also constructed by a pairwise superposition of exact two-sphere results. Exact
solutions of the force–torque on two inert spheres are included in standard texts (e.g.
Kim & Karrila 1992). For simple shear in the x,y-plane, the bulk rate of strain tensor
E is given by

E =
γ̇

2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , (2.2)

where γ̇ is the shear rate. The bulk vorticity Ω is

Ω = − γ̇

2
(0, 0, 1). (2.3)
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Fsq is the force–torque due to the squirming motion on the surface of spheri-
cal particles without any translational–rotational motion. It is calculated from
superposition of pairwise interactions between squirmers, in which translational and
rotational motions are restrained, using the boundary element method (cf. Ishikawa
et al. 2006). We should note that two nearby squirmers generate high multipoles even
though they generate only stresslet when they are alone. Such high multipoles are
included in Fsq , because they can be calculated by the boundary element method. Ftor

consists of the external torques due to the bottom-heaviness, and Frep contains the
non-hydrodynamic interparticle forces (if any). The details of Fsq , Ftor and Frep will
be described explicitly later in this section. The first term in (2.1) represents the force–
torque generated on inert spheres due to their translational–rotational motion in a
fluid otherwise at rest. The second term represents the force–torque on inert spheres,
without translational–rotational motion, due to the background linear flow field. The
third term represents the force–torque on squirmers, without translational–rotational
motion, due to their surface squirming motions. These three terms are hydrodynamic
forces–torques, and it is possible to exploit the linearity of the Stokes equation to
decompose the total hydrodynamic force into the three simpler hydrodynamic forces.

The surface of a spherical squirmer is assumed to move purely tangentially and
these tangential motions are assumed to be axisymmetric and time-independent. Thus
the tangential surface velocity on a squirmer is given as

us =

2∑
n=1

2

n(n + 1)
Bn

( e · r
r

r
r

− e
)

P ′
n(e · r/r), (2.4)

where Pn is the nth Legendre polynomial, r is the position vector and r = |r |. We
follow Ishikawa et al. (2006) and omit all squirming modes higher than the second,
i.e. Bn =0 in us when n � 3. The reasons for limiting ourselves to the first and second
modes are as follows.

(i) In the case of a solitary squirmer, the first mode determines the swimming
speed, the second mode determines the stresslet, and the higher modes have no effect
on the swimming speed or the stresslet.

(ii) The higher a mode is, the more rapidly it decays with r , so the effect of higher
modes is negligible in the far-field interaction.

(iii) The role of high modes in the near-field is to generate fluctuations in the
velocities and stresslet due to small displacements in the θ-direction.
The overall properties should be captured by using the first two modes. This
simplification in the boundary condition will be used throughout this paper. We
let the ratio of second-mode squirming to first-mode squirming be β , i.e. β = B2/B1.
It should be noted that B2, and hence β , can have either sign. A squirmer with
positive β is a puller, analogous to a micro-organism for which the thrust-generating
apparatus is in front of the body (which dominates the drag), as for biflagellate algae
such as Chlamydomonas, whereas a squirmer with negative β is a pusher, i.e. the thrust
is generated behind the body, as for bacteria or spermatozoa. As an example, the
velocity field generated by a solitary squirmer with β = 5 is shown in figure 1. The
authors have already compiled a database of pairwise interactions, covering the whole
range of relative initial positions and orientations of the two squirmers for various
positive values of β (Ishikawa et al. 2006) and, more recently, for negative values
of β (unpublished) from which an arbitrary interaction can be interpolated. We will
exploit the database in constructing Fsq , which represents the pairwise superposition
of the interaction of two squirmers.
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ee

Figure 1. Velocity vectors relative to the translational velocity vector of a solitary squirmer
with β =5. Uniform flow of speed 1.0, in dimension-free form, coming from far right.

If the squirmer is bottom-heavy, there is an external torque acting on the squirmer
and this must be equal to the hydrodynamic torque, so that the net torque on the
squirmer is zero. If the distance of the centre of gravity is h from the centre of the
squirmer, in the opposite direction to its swimming direction in undisturbed fluid (see
figure 2), then there is an additional torque of

Ftor = 4
3
πa3ρhe ∧ g, (2.5)

where ρ is the density, g is the gravitational acceleration vector, and the gravitational
direction is g/g.

Although the governing equation of squirmer motions (2.1) does not in principle
allow the spheres to overlap, there are cases of very small separation in which
numerical errors associated with the integration of U∗ in time can lead to an apparent
overlap. In order to avoid the prohibitively small time step needed to overcome this
problem, we introduce a repulsive force, as used by Brady & Bossis (1985, 1988):

Frep = α1

α2 exp(−α2ε)

1 − exp(−α2ε)

r
r
, (2.6)

where α1 is a dimensional coefficient, α2 is a dimensionless coefficient and ε is the
minimum separation between squirmer surfaces non-dimensionalized by their radius.
This form of the interparticle force corresponds to charged particles interacting
through colloidal forces at constant surface charge. Dratler & Schowalter (1996)
employed two completely different types of repulsive forces for their dynamic
simulation of suspensions of non-Brownian hard spheres, and concluded that the
precise form of the repulsive force is unimportant provided it decays rapidly to
zero with increasing particle separation. The coefficients used in this study are
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Figure 2. A sketch of the arrangement of a bottom heavy squirmer. Gravity acts in the
g-direction, while the squirmer has orientation vector e, radius a and its centre of mass
distance h from its geometrical centre.

α1/(µa2γ̇ ) = 10−2 − 10−4 and α2 = 103. The minimum separation obtained with these
parameters is in the range 10−4 − 10−5.

The effect of repulsive forces between inert spheres on the pair distribution function
can be found in Bossis & Brady (1984), and that on the rheological properties in
Brady & Bossis (1985). In the case of non-bottom-heavy squirmers, the effect of the
repulsive forces on the bulk stress is small, because the stresslet due to squirming is
isotropic, as will be discussed in § 3. When squirmers are bottom-heavy, the squirming
motion directly contributes to the bulk stress. The stresslets generated by the squirming
motions of two squirmers in near-field separation were derived analytically using
lubrication theory by Ishikawa et al. (2006), and the leading order of the stresslet is
log(ε−1). Therefore the bulk stress due to squirming diverges if ε goes to zero, and
the effect of the repulsive force cannot be formally neglected. Fortunately, however,
the leading order term log(ε−1) is a very weak singularity, and thus dominates the
solution only in a mathematical sense. Even if we take ε as the ratio of molecular
to macroscopic dimensions, log ε−1 is not large enough to generate a strong stresslet.
Thus, the repulsive force does not significantly affect the stresslet due to squirming
provided that ε is taken as the dimensionless size of a molecule or larger.

The bulk rheological properties of a suspension can be described by the average
stress tensor. In the presence of external torques due to bottom-heaviness and
interparticle forces, there are two contributions to the bulk stress: (i) particle
contribution to the hydrodynamic stress due entirely to the bulk deformation imposed
at the outer boundary, and (ii) particle contribution to the elastic stress due to the
repulsive forces. Batchelor (1977) derived the particle bulk stress as

Σ (p) =
1

V

∑
N

H =
1

V

∑
N

{S + S′ + J}, (2.7)

where S is the stresslet given by (1.3), S′ is the asymmetric part of the force dipole
generated by the external torques, J is the elastic stress and H is the total stress.
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It is possible to exploit the linearity of the Stokes equation to decompose the total
hydrodynamic stress into simpler stresses. These stresses are calculated in a pairwise
additive fashion, in a similar manner to the force and torque. The stresslet due to
squirming motions is obtained from our database of pairwise interactions. The stress
due to external torques (S′) can be calculated by (cf. Kim & Karrila 1992)

S′ = −1

2
ε : T , (2.8)

where ε is the unit alternating isotropic tensor, and T is the external torque. The
torque due to bottom-heaviness has already been given by (2.5). This stress has no
interaction with other squirmers, so it can be calculated individually. The elastic
contribution to the particle bulk stress J can be calculated as (Batchelor 1977)

∑
N

J = −
N∑

i=2

∑
j<i

r ij Fij , (2.9)

where r ij is the centre–centre separation of squirmers i and j , and Fij is their pairwise
interparticle force given by (2.6).

The computational region is a cube with side L. The background simple shear flow
is in the x, y-plane as given by (2.2) and (2.3). To model a suspension of infinite
extent, periodic boundary conditions are employed, as used by Brady & Bossis (1985)
and Bossis & Brady (1984). For the simple shear flow in the x,y-plane, the periodic
conditions in the x- and z-directions are straightforward. In the y-direction, however,
the periodicity requires a translation in the x-direction by an amount Lγ̇ t in order
to preserve the bulk linear shear flow, where t is time. In using periodic boundary
conditions a squirmer interacts with the other squirmers in the periodic cell, whose
centre coincides with the centre of the squirmer of interest, and interactions with
particles outside the cell are neglected. Since a squirmer is a force-free particle, the
stresslet disturbance due to the particle decays as r−3, where r is the distance. By using
Green’s theorem for Stokes flow one can show, as O’Brien (1979) has for Laplace’s
equation, that force-free particles outside a volume of characteristic radius rc in total
contribute zero to the stresslet of a particle at the centre of this volume with an error
O(r−3

c ). The minimum length of L used in this study is about 14, so the maximum
error for the stresslet disturbance due to the boundary condition is approximately
0.3 %, which is acceptable. A further check on the accuracy of the computations is
made in Appendix A, where the shear viscosity is computed for a periodic suspension
on a cubic lattice, and compared with the exact solution of Nunan & Keller (1984).
The results agree well for c < 0.15.

All equations are non-dimensionalized by using radius a, characteristic velocity
aγ̇ and the fluid viscosity µ. There are two important dimensionless parameters in
addition to β: Sq and Gbh . Sq is the ratio of the swimming velocity of a solitary
squirmer (2B1/3) to the characteristic velocity, and is defined as

Sq =
2B1

3aγ̇
. (2.10)

Gbh is the ratio of the gravitational torque to a scale for the viscous torque, based on
the squirming velocity, and is defined as

Gbh =
2πρgah

µB1

. (2.11)
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Figure 3. Instantaneous position of 64 identical squirmers with Sq = 1 and β = 5. Solid lines
are trajectories of the squirmers during one time interval. The background simple shear flow
is in the x,y-plane.

The time-marching is performed by the fourth-order Adams–Bashforth scheme.
The effect of the number of particles can be found in Bossis & Brady (1984), in
which the same numerical methods were employed. They used 25 particles and the
accuracy was confirmed by comparing with the results for 100 particles. We have
also performed some test calculations with 27, 64 and 125 inert spheres in a simple
shear flow field. The results show that the difference between the 64- and 125-particle
cases in the averaged stresslet, defined by equation (1.3), is about 1 % or less in
our parameter range, so we will use 64 particles as a balance between accuracy and
numerical efficiency. Most of the computations will be performed in the time interval
of t = 0 − 100, and suspension-average values are calculated by averaging all particles
in the computational cell from t =20 to 100. It is confirmed that the probability
density function of two squirmers becomes independent of specific initial conditions
after t = 20.

3. A semi-dilute suspension of non-bottom-heavy squirmers
Initially the three-dimensional movement of 64 identical non-bottom-heavy

squirmers with β = 5 in a simple shear flow field is computed under the conditions of
c =0.1 and Sq =1. The parameters for the repulsive force (2.6) are α1/(µa2γ̇ ) = 10−2

and α2 = 103. The instantaneous positions of squirmers and their trajectories during
one time interval are shown in figure 3, where the background shear flow is in the
x,y-plane. Some of the lines in figure 3 are not attached to spheres, because a squirmer
passing through a boundary of the periodic cell is replaced on the other side, and its
trajectory has a jump at the boundary. Since the background translational velocity
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ε
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10–1

100

101

102

103

104

p(r)

c = 0.1, β = 5
still fluid
Sq = 1
Sq = 0

Figure 4. Normalized probability density function distribution for Sq = 1 and 0 in a shear flow
(c = 0.1 and β = 5), where ε is the separation between squirmer surfaces. Sq = 0 corresponds to
no squirming, i.e. the same as inert spheres. ‘Still fluid’ stands for the case in which squirmers
swim in a still fluid.

increases with y, the trajectories of squirmers in high y positions become longer than
those in low y positions. The squirmers in a shear flow cannot swim in straight
lines, because they rotate along with the background vorticity and their interactions
generate translational–rotational velocities (see Ishikawa et al. 2006).

The normalized probability density distribution in this case, defined as

p(r) =

∫
r=const

P (r0|r0 + r) dr

4nπr2
, (3.1)

is shown in figure 4; here n is the number density (n= N/V ), and P (r0|r0 + r) dr is
the conditional probability that, given that there is a squirmer centred at r0, there
is an additional squirmer centred between r0 + r and r0 + r + dr . The normalized
probability densities in the case of inert spheres in a shear flow (Sq =0) and in the
case of squirmers in a still fluid, i.e. Sq = ∞, are shown in figure 4 as well. We see
that the p(r) distribution for the Sq = 1 case is very similar to that for squirmers
in a still fluid, so the p(r) in the near-field is dominated by the squirming motion
rather than the background shearing motion if Sq = 1. The minimum separation in
the Sq = 1 case about 10−5 and in the Sq = 0 case about 10−4, which means the
minimum separation decreases with increasing squirming motion.

The stresslet generated by two spheres in a shear flow increases with decreasing ε

(cf. Kim & Karrila 1992), where ε is the separation between squirmer surfaces.
Therefore, the particle stress H may be increased by the squirming motion. On the
other hand, p(r) with Sq = 1 is smaller than with Sq =0 when 2 × 10−4 � ε � 10−1.
The smaller the p(r) is, the smaller the stresslet generated, so a lower particle stress
may be generated in this regime. Which of these two contrary effects dominates the
particle stress due to squirming will be of interest.

Since the particle bulk stress is given by (2.7), the apparent viscosity of the
suspension may be calculated as

η = µ

(
1 +

3

4π

Hxy

µγ̇
c

)
, (3.2)
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Figure 5. Normalized probability density function distribution for Sq = 0, 0.1, 1 and 10
(c = 0.1 and β = 5). Jsh is kept constant, which corresponds to changing the squirming velocity
while the ambient shear rate and the repulsive force between squirmers are kept constant.

and in what follows we will mainly discuss the (x,y)-component of the particle stress,
Hxy ; Hxy for Sq = 1 is 12.5 and for Sq = 0 is 12.8. Therefore, the apparent viscosity
is decreased, slightly, by the squirming motion. We may say that the effect of the
smaller p(r) in the 2 × 10−4 � ε � 10−1 regime is stronger than that of the smaller
minimum separation. The effect is very small, however. The numerical error of the
present simulation associated with the time-averaging process is less than about ±0.1
for Hxy . (Error bars will be shown only when the size of an error bar is wider than the
dot representing the data.) It was confirmed numerically that the effect of squirming
on Hxy exceeds the numerical error, by performing trial simulations with various
initial conditions of particles, various particle numbers and various time-intervals for
averaging.

The dominant dimensionless parameter for this phenomenon is Sq . However, the
squirming effect on the rheological property of the suspension is so small that the effect
of the repulsive force cannot be neglected completely. The strength of the repulsive
force may be assumed as a physical property for each particle, and is not influenced by
the ambient flow field. Thus we introduce the following two dimensionless parameters:

Jsh =
α1

µa2γ̇
, Jsq =

3α1

2µaB1

. (3.3)

Jsh is the ratio of the repulsive force to the viscous force due to the background
shear flow, and Jsq is the ratio of the repulsive force to the viscous force due
to the squirming motion. The effect of Sq will be investigated first with Jsh

kept constant (α1/(µa2γ̇ ) = 10−2 and α2 = 103), which corresponds to changing the
squirming velocity while the ambient shear rate and strength of the repulsive force
are kept constant. Secondly the effect of Sq will be investigated with Jsq held constant
(α1/(µa2γ̇ ) = 10−2 − 10−4 and α2 = 103), which corresponds to changing the ambient
shear rate while the squirming velocity and strength of the repulsive force are kept
constant. The effect of changing α1 will be omitted in the following, because α1

controls only the minimum separation between squirmer surfaces, and this has a
weak effect on the bulk stress, as discussed in § 2.

The normalized probability densities for constant Jsh are shown in figure 5 for
Sq = 0, 0.1, 1 and 10 (c =0.1 and β = 5). By comparing Sq = 0, 1 and 10, we see that
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Figure 6. Particle stress component Hxy under the Jsh = const condition with Sq = 0, 0.1, 1
and 10 (c = 0.1 and β = 5). The result of Sq = 0 is shown as a broken line.

the minimum separation decreases with increasing Sq , and the value of p(r) decreases
in the near-field with increasing Sq . This result is consistent with our former study
on the interaction between just two squirmers (Ishikawa et al. 2006), in which, in
general, two squirmers at first attract each other, then they change their orientation
dramatically in the near-field, and eventually avoid each other. Two squirmers can
come very close, but they do not swim as a pair (except when the trajectories are
confined to two dimensions, which is not being considered here) and avoid each
other after a very short period. In the case of two inert spheres in a shear flow,
however, there is an infinite region of closed trajectories, in which two spheres remain
indefinitely as a pair (Batchelor & Green 1972a). This essential difference may be the
reason why the p(r) distribution is influenced considerably by Sq . The particle stress
component Hxy in this case is shown in figure 6 for Sq =0, 0.1, 1 and 10. The result
for Sq = 0 is shown as a broken line in the figure. It is found that Hxy decreases with
increasing Sq and hence the squirming motion has the effect of reducing the apparent
viscosity of the suspension slightly.

Secondly Jsq is kept constant. The normalized probability densities are shown in
figure 7 for Sq = 0.1, 1 and 10 (c =0.1 and β = 5). (The inert sphere case was not
included because it corresponds to Sq = ∞ under the constant Jsq condition.) It is
found that the minimum separation does not change with Sq , because it is dominated
mainly by the squirming motion in this regime and the squirming velocity is kept
constant if Jsq is kept constant. The effect of the background shear flow is apparent
when Sq = 0.1; p(r) increases with increasing shear rate for small Sq . If Sq � 1 the
p(r) distribution is almost unaffected, because the effect of the background shear
flow is too small to overcome the effect of squirming. The particle stress component
Hxy in this case is shown in figure 8 for Sq = 0.1, 1 and 10. It is found that Hxy

decreases with increasing Sq for small Sq , which is the same tendency as for constant
Jsh . Here, however, Hxy converges to a fixed value if Sq � 1, because the effect of the
background shear flow has become too weak.

β is the ratio of second-mode squirming to first-mode squirming in (2.4), i.e.
β = B2/B1. The values of the parameter β used here are from −5 to 10; the velocity
field generated by a solitary squirmer with β = 5 is shown in figure 1 as an example,
and those with β = 1 can be found in Ishikawa et al. (2006). When |β| � 1, there is
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Figure 7. Normalized probability density function distribution for Sq = 0.1, 1 and 10 (c = 0.1
and β = 5). Jsq is kept constant, which corresponds to changing the ambient shear rate while
the squirming velocity and the repulsive force between squirmers are kept constant.
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Figure 8. Particle stress component Hxy under the Jsq = const condition with Sq = 0.1, 1
and 10 (c = 0.1 and β = 5).

no recirculation region around the squirmer. The values |β| =5 and 10 are chosen in
order to observe in an obvious way the effect of second mode squirming. Recall that
a squirmer with positive β is a puller, and that with negative β is a pusher. Thus the
stresslet given by equation (1.4) is positive when β is positive, and negative when β

is negative. The normalized probability densities with various β are shown in figure 9
(c = 0.1 and Sq = 1). (The result for inert spheres is shown in the figure as well). It
is found that the minimum separation decreases with increasing |β|, and p(r) with
β = 10 has a small value in the near-field. The particle stress component Hxy in this
case is shown in figure 10. (The result of the inert sphere case is shown as a broken
line in the figure). We see that Hxy is smaller than that for inert spheres when β has
positive values, but Hxy is not so much different from that of inert spheres when β
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Figure 10. Particle stress component Hxy for |β| = 1, 5 and 10 under the conditions of
c = 0.1 and Sq = 1. The result of the inert sphere case is shown as a broken line.

has negative values; however, increasing the second-mode squirming has the effect of
reducing the apparent viscosity of the suspension slightly.

The apparent shear viscosity η in a dilute suspension of inert rigid spheres is given
by

η = µ
(
1 + 5

2
c + kc2 + O(c3)

)
. (3.4)

where the 5/2 was derived by Einstein (1906) and the constant k depends on the
nature of the flow and on the magnitude of the Péclet number, defined as Pe = Ua/D.

Here D is the self-diffusivity of particles, generated by Brownian motion (as in
most of the studies reported in the literature) or by random or chaotic motion of
different origins, as here. In the limit of strong Brownian motion (Pe � 1), Batchelor
(1977) showed that k is the sum of a contribution k1 due to purely hydrodynamic
interactions (Batchelor quoted k1 = 5.2, but it is now generally accepted that k1 = 5.0;
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Figure 11. Normalized probability density function distribution for c = 0.025, 0.05, 0.075
and 0.1 under the conditions of Sq = 1 and β = 5.

(see Cichocki & Felderhof 1988), and another, k2 = 1.0, directly attributable to the
Brownian motion. In the limit of weak Brownian motion (Pe � 1), k2 = 0, k1 is still
there, and there is another term, k3, which comes from the effect on the configuration
of the particles of the linear ambient flow. In the case of a pure straining motion,
k3 = 2.4 (Batchelor 1977), but for a simple shearing motion k3 cannot be calculated
because of the existence of closed particle orbits. The self-diffusivities of non-bottom-
heavy squirmers are investigated by Ishikawa & Pedley (2007), and the results show
that the Pe of squirmers with β = 5 is approximately O(1), suggesting that there
should not be any difficulty computing the effective viscosity even in simple shear.

The normalized probability densities in the present simulation with c =0.025,
0.05, 0.075 and 0.1 are shown in figure 11 (Sq = 1 and β = 5). We see that the
p(r) distribution is not significantly affected by c. If c � 0.1 most of the interaction is
pairwise and the particle distribution does not show large-scale micro-structure, so the
normalized probability density should be similar. The apparent viscosity is, however,
strongly dependent on c. The result is non-dimensionalized by µ and shown in
figure 12 with equation (3.4). It is found that the apparent viscosity of the suspension
of squirmers is very similar to that given by equation (3.4) with k = 5.0, i.e. for
large Péclet number. The O(c2) term, as calculated for inert spheres by Batchelor &
Green (1972b), is captured in the present simulation. The apparent viscosity of the
suspension of squirmers is slightly smaller than that of inert spheres, but this is barely
distinguishable in figure 12. (It is confirmed in Appendix B that our computations
applied to inert spheres agree with equation (3.4), k = 5.0, for c � 0.1.) This result
suggests that, notwithstanding the deterministic nature of our squirmers’ trajectories,
the overall effect of particle–particle interaction with squirming is indistinguishable
from that with Brownian motion at these values of Sq and β .

4. A semi-dilute suspension of bottom-heavy squirmers
In the case of bottom-heavy squirmers there is an additional important parameter

that is the direction of gravity relative to the background shear field. In this study
the gravitational direction is taken successively in the −x, − y and −z directions,
while the background shear flow remains in the x,y-plane. The flow field is linear in
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Figure 12. Change of the apparent viscosity of the suspension with c (Sq = 1 and β =5).
Einstein’s analytical equation and Batchelor’s analytical equation are also shown.

the Stokes flow regime; thus one can simply add two velocities in order to obtain
the instantaneous velocities of bottom-heavy squirmers in a shear flow: (i) velocities
of non-bottom-heavy squirmers in a shear flow, and (ii) velocities of bottom-heavy
squirmers in a still fluid. The trajectories of squirmers, however, are not linear and
one cannot simply add two trajectories in the same manner as the velocities. Other
quantities such as the probability density and the suspension-averaged stress tensor
also cannot be added in the same manner as the velocities. It is necessary to discuss
separately the effect of bottom-heaviness in each gravitational direction relative to
the background shear field.

Gbh is the ratio of the gravitational torque to a scale for the viscous torque,
based on the squirming velocity, as defined by (2.11). If one assumes that the micro-
organisms swim in water at 10 body lengths per second with their centre of mass 0.2a

down from the geometric centre, Gbh is about 5 for micro-organisms with radius of
12.5 µm, and about 50 for micro-organisms with radius of 125 µm. The parameter
range used in this section is Gbh =3–100. The parameters for the repulsive force are
α1/(µa2γ̇ ) = 10−2 and α2 = 103 throughout this section. The effect of the repulsive
force is much smaller than the gravitational effect, so it will not be discussed in this
section.

4.1. Gravity is taken parallel to −x

In this case the shear flow is directed vertically, as in Kessler’s (1986a) experiments
using vertical pipe flow. The three-dimensional movement of 64 identical bottom-
heavy squirmers in a simple shear flow field is computed for various Gbh . The
other parameters are set as c = 0.1, Sq = 1 and β = 5. The velocity vectors of each
squirmer relative to the background flow field are averaged over all squirmers in the
computational cell during t =20 − 100, and the results are shown in figure 13. We see
that the length of the squirmer-averaged velocity vector increases with increasing Gbh

and its direction approaches to the x-direction with increasing Gbh . This is because
the more bottom-heavy the squirmers are, the more rapidly their swimming direction
returns towards the vertical after an interaction; disturbances to this direction due to
the background vorticity are also suppressed by the strong bottom-heaviness. Similar
phenomena have been observed in experiments using real micro-organisms, such as
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Figure 13. Squirmer-averaged velocity vectors relative to the background flow field with
Gbh = 3, 10, 30 and 100 (g/g = − x, c = 0.1, Sq = 1 and β =5).

Kessler’s (1986a) pipe flow experiments. When the flow is directed downwards, the
cells swim towards the pipe axis, forming a concentrated focused beam. When the
flow is upwards, the cells swim towards its periphery, away from the fastest upflow.
These tendencies are consistent with figure 13: the fact that the average velocity vector
has a negative y-component means the squirmers are moving towards lower values of
the upflow velocity. We will show squirmer-averaged velocity vectors under different
conditions, and all of these results are consistent with the discussion in Pedley &
Kessler (1992).

It may be helpful in understanding the squirmers’ motion to introduce a normalized
angular probability density function, defined as

p′(θi) =
2

nV sin(θi)

∫ ∫
θi=const

P (r, e) dAe dV, (4.1)

where P (r, e) dAe is the probability that there is a squirmer centred at r with
orientation vector e within the solid angle dAe, and θi is the angle from the i-axis.
P (r, e) satisfies the following equation:∫ ∫

P (r, e) dAe dV = N. (4.2)

If one assumes isotropic orientation of squirmers, then p′(θi) = 1 for all θi . The
results for p′(θx) with various Gbh are shown in figure 14. When Gbh = 3 the p′(θx)
distribution is almost isotropic, and the squirmers only gradually show a preferred
direction as Gbh increases. Their average orientation vectors shift towards the x-axis
with increasing Gbh , and the peak of p′(θx) increases with increasing Gbh . These results
are consistent with the average velocity vectors shown in figure 13.

The stresslet of a solitary squirmer is given by (1.4), and it is a function of the
orientation vector e. The stresslet generated by a solitary squirmer has an order-c effect
on the bulk stress, which is therefore strongly dependent on the squirmer orientations.
The effect of Gbh on the particle stress component Hxy is shown in figure 15 (c = 0.1,
Sq = 1 and β = 5). The symmetric part of Hxy is defined as (Hxy + Hyx )/2, and the
antisymmetric part of Hxy is defined as (Hxy − Hyx )/2. In figure 15, we also show
three kinds of contributions to the total stress: (i) the stress due to the background
shearing motion (including the repulsive interactive force contribution), (ii) the stress
due to the squirming motion, and (iii) the stress due to the bottom-heaviness. It is
found that, as Gbh increases, the symmetric part becomes much lower than the inert
sphere value of 12.8, and even negative for 30 � Gbh � 100. The Gbh =30 case shows
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Figure 15. The effect of Gbh on the symmetric and asymmetric part of the particle stress
components xy and yx (g/g = −x, c = 0.1, Sq = 1 and β = 5). ‘Shearing’ indicates the stress
due to the shearing motion, ‘squirming’ indicates the stress due to the squirming motion, ‘BH’
indicates the stress due to the bottom-heaviness, and ‘total stress’ is the sum of these three.
(a) First normal stress difference, (b) second normal stress difference.

the lowest value of the four cases shown, because it is at that value of Gbh that the
squirming motions have their biggest effect. An antisymmetric part also appears in
the case of bottom-heavy squirmers and it increases with increasing Gbh .

The effect of Gbh on Hxy looks complex; however, it can be explained by considering
the orientation distributions shown in figures 13 and 14. If Gbh is so large that a
solitary squirmer swims in the x-direction even in a shear flow, the (x,y)-component
of the stresslet given by (1.4) is zero. If Gbh is so small that a solitary squirmer swims
with the constant background vorticity, the (x,y)-component of the time-averaged
stresslet is again zero because it is isotropic. The (x,y)-component of the stresslet
for a solitary squirmer is negative when exey is negative, and it has its minimum

value when e =(±1/
√

2, ∓1/
√

2, 0), which corresponds to θx = π/4. It is found from
figure 13 that the squirmer-averaged velocity vectors are in the region x > 0, y < 0.
This is why the symmetric part of Hxy becomes smaller than in the inert sphere case.
We see from the p′(θx) distribution in figure 14 that the Gbh =30 case has its large
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peak around θx = π/8. This is the reason why the symmetric part of Hxy is at its most
negative then.

The asymmetric part of Hxy is generated by torques due to the bottom-heaviness.
The rheological properties of a dilute suspension of dipolar spheres have been cal-
culated by Brenner (1969), and the contribution of the torques due to bottom-
heaviness to the (x,y)-component of the particle bulk stress Σ (p)

xy can be deduced to
be

Σ (p)
xy = µγ̇

(
5
2
c + 3

2
c
)
, G′

bh � 4π,

Σ (p)
xy = µγ̇

(
5
2
c
)
, 1 � G′

bh,

}
(4.3)

where G′
bh is defined using aγ̇ as a characteristic velocity in (2.11). In the case of a

solitary inert sphere in a shear flow, the contribution of the bottom-heaviness does
not exceed 1.5 µγ̇ c, which corresponds to 2π for dimensionless Hxy . In the case of
a solitary squirmer, this result is still valid and the asymmetric part of Hxy again
does not exceed 2π. However, in the case of two interacting squirmers, it can easily
exceed 2π if Sq and Gbh are large enough. To simplify the explanation, let Sq � 1
and Gbh � 1, so that the background shear flow can be neglected. The torque exerted
between two squirmers in near contact has been derived by Ishikawa et al. (2006),
and the leading order in terms of ε is log(ε−1). As ε tends to zero, the torque due
to the squirming motion increases as log(ε−1). This torque must be balanced against
the external torque due to bottom-heaviness, because no rotational velocity will be
generated under the Gbh � 1 condition. As a result, the asymmetric part of Hxy

increases as log(ε−1) when ε tends to zero. The hydrodynamic interactions between
squirmers are not isotropic and are influenced by the gravitational direction relative
to the background shear field; therefore they may increase or decrease the asymmetric
part of time-averaged Hxy . In the case shown in figure 15, the asymmetric part of Hxy

increases with Gbh . Consequently, this rheological effect for bottom-heavy squirmers
is not due to cell–cell interactions, but due to the intrinsic stresslets on the aligned
individual squirmers.

The stresslet of a solitary squirmer given by (1.4) contributes to normal stress dif-
ferences as well. If the orientation vector of all (solitary) squirmers is in the
x-direction, for instance, Sxx is equal to −2Syy and −2Szz. The first normal stress dif-
ference, defined by Sxx − Syy , is positive and the second normal stress difference,
defined by Syy − Szz, is zero in this case. Thus the normal stress differences of the
particle bulk stress are strongly dependent on the squirmer orientations. The effect
of Gbh on normal stress differences of the particle stress is shown in figure 16
(c = 0.1, Sq = 1 and β = 5). The individual contributions to the total stress are shown
as well. The first normal stress difference is defined as Hxx − Hyy , and the second
normal stress difference is defined as Hyy − Hzz. When Gbh = 3, the normal stress
differences are small. Because the p′(θx) distribution with Gbh =3 is almost isotropic
(see figure 14), the normal stress differences generated by individual squirmers cancel
out overall. When Gbh = 10, the first normal stress difference is negative and the
second normal stress difference is positive. This is because the squirmers in this case
show a weakly preferred direction between θx = π/4 and π/2 (see figure 14), and
the first and second normal stress differences generated by a solitary squirmer with
an orientation angle of π/4 < θx < π/2 are negative and positive, respectively. When
Gbh = 100, the first normal stress difference has a large positive value and the second
normal stress difference becomes small. This tendency is similar to that expected
for solitary squirmers swimming in the x-direction. The normal stress differences are
strongly dependent on the squirmers’ orientation, and their sign changes at θx = π/4.
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Figure 16. The effect of Gbh on the normal particle stress differences (g/g = −x, c = 0.1, Sq = 1
and β = 5). ‘Shearing’ indicates the stress due to the shearing motion, ‘squirming’ indicates the
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show all the vectors in the same figure. (a) Gbh = 10, (b) Gbh =100.

Next the effect of Sq is investigated under the conditions of c =0.1, Gbh = 10 and
100, and β = 5. The squirmer-averaged velocity vectors for Gbh =10 and 100 are
shown in figures 17(a) and 17(b), respectively. The dimensionless swimming velocity
of a solitary squirmer is equal to Sq so the vectors in figure 17 are divided by Sq in
order to show all the vectors in the same figure. We see that the squirmers tend to
swim more in the x-direction as either Gbh or Sq is increased. The effect of Gbh is
straightforward, and the effect of Sq may be explained as follows. Strong squirming
motion induces strong interaction between squirmers, so the effect of the background
vorticity of the shear flow decreases as Sq is increased. The effect of Sq on the particle
stress component Hxy is shown in figure 18 (c = 0.1, Gbh = 10 and 100, and β = 5). It
is found that the symmetric part decreases with increasing Sq and the antisymmetric
part increases with increasing Sq. The symmetric result follows from the fact that
when the gravitational direction is −x, the squirming motion decreases the symmetric
part of Hxy , as mentioned before, and the effect of squirming increases with increasing
Sq. The asymmetric part of Hxy is much larger than 2π in the case of Gbh = 100 and
Sq = 10. This is because the effect of the background shear flow is small when Sq = 10,
and the torque due to the squirming motion of two squirmers has to be balanced
with the external torque. Since the torque generated by two squirmers in near contact
increases as log(ε−1) when ε tends to zero, the asymmetric part of Hxy may also
become larger than 2π.
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The effect of Sq on the normal stress differences is shown in figure 19 (c = 0.1,
Gbh = 10 and 100, and β = 5). We see that the first normal stress difference increases
with increasing Sq. This is because the first normal stress difference for solitary
squirmers swimming in the x-direction is proportional to the second squirming mode
B2 as given by (1.4), and hence is proportional to the parameter Sq.

The effect of β is investigated under the conditions of c = 0.1, Sq =1, Gbh = 10
and 100. In the case of two interacting squirmers (Ishikawa et al. 2006), the absolute
value of β has the effect of enhancing the interaction between squirmers and they
change their orientations at greater separation distances as |β| is increased. The
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squirmer-averaged velocity vectors for Gbh = 10 and 100 are shown in figures 20(a)
and 20(b), respectively, where the results with negative β are drawn as broken lines. For
Gbh =10, there is a tendency for the squirmers to swim increasingly in the x-direction
as |β| is increased. This is because the disturbance due to hydrodynamic interaction
increases as |β| is increased, so the effect of the background vorticity decreases
compared with the hydrodynamic interaction. This is presumably the reason why the
averaged velocity vector comes closer to the x-axis, though the vector length decreases,
for large |β|. In the case of Gbh = 100, the effect of β appears especially when β = −5.
Under large Gbh conditions, squirmers tend to swim upward. Two squirmers with
positive β attract each other when they are aligned vertically, whereas two squirmers
with negative β repel each other. Thus two squirmers with negative β interact when
they are further apart than those with positive β , which may be the reason why the
orientation vector of squirmers with β = −5 is shifted from the x-direction.

The effect of β on the particle stress component Hxy is shown in figure 21 (c =0.1,
Sq =1 and Gbh = 10 and 100). The stresslet Sxy for a solitary squirmer is positive when
β is negative, but negative when β is positive, if the orientation vector satisfies exey < 0.
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Since the symmetric part is directly influenced by the stresslet due to squirming, it
decreases with increasing β . The effect of β on the normal stress differences is shown
in figure 22 (c = 0.1, Sq = 1 and Gbh = 10 and 100). We see that a large first normal
stress difference appears in the case of Gbh = 100 and a negative first normal stress
difference appears when β is negative. This is because the first normal stress difference
for a solitary squirmer is proportional to β , as given by (1.4), and changes its sign
with β . We can say, therefore, the sign and the strength of normal stress differences
are strongly dependent on β .

Lastly, the effect of c is investigated under the conditions of Sq = 1, Gbh = 10 and
100, and β = 5. The squirmer-averaged velocity vectors for Gbh = 10 and 100 are
shown in figures 23(a) and 23(b), respectively. In the case of Gbh =10, the length of
the velocity vectors decreases as c is increased. The disturbance due to hydrodynamic
interaction increases with increasing c, so the orientations of the velocity vectors are
more widely dispersed for larger c, which results in the shortening of the squirmer-
averaged velocity vectors. In the case of Gbh = 100, the effect of c is not significant,
because, again, the effect of the bottom-heaviness is too large for the hydrodynamic
interaction to be important.
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The rheology of a suspension is often discussed in terms of an apparent viscosity
and of normal stress difference coefficients. The apparent viscosity of the suspension of
non-bottom-heavy squirmers can be calculated from (3.2), but this is not appropriate
in the case of bottom-heavy squirmers. A suspension of bottom-heavy squirmers
shows non-Newtonian properties, and Hxy is not equal to Hyx . Therefore, we will
introduce two types of apparent viscosity ηxy and ηyx as

ηxy = µ

(
1 +

3

4π

Hxy

µγ̇
c

)
, ηyx = µ

(
1 +

3

4π

Hyx

µγ̇
c

)
. (4.4)

(If one defines the apparent viscosity by using the symmetric part of Hxy , then it
corresponds to (ηxy +ηyx)/2.) The first and second normal stress difference coefficients
are calculated as

φ1 =
3µ

4πγ̇ 2
(Hxx − Hyy)c, φ2 =

3µ

4πγ̇ 2
(Hyy − Hzz)c. (4.5)

The effect of c on the apparent viscosities, which are non-dimensionalized by dividing
by µ, is shown in figure 24 under the conditions of Sq = 1, Gbh = 10 and 100, and
β = 5. The equation (3.4) with k =0.5 is shown in the figure as well. It is found that all
apparent viscosities are lower than given by this equation, and the difference increases
with increasing Gbh and c. Under the condition that gravity acts in the −x-direction,
the apparent viscosity of the suspension of bottom-heavy squirmers is smaller than
that of a suspension of inert spheres. Moreover, it can even become smaller than the
viscosity of the solvent fluid. The bulk stress of a suspension is given by (1.1), and
the apparent viscosity of the suspension is smaller than the viscosity of the solvent
fluid when the particle stress is negative. The particle stress can be calculated from
the stresslet of individual particles given by (1.2). The stresslet of a solitary squirmer
in a shear flow is the sum of the stresslet due to the background shear flow and that
due to the squirming motion, where the effect of the bottom-heaviness is omitted
for simplicity. The xy-component of the stresslet due to squirming becomes negative
when exey is negative, as given by (1.4). Therefore, the particle stress can be negative
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Figure 25. Change of the normal stress difference coefficients with c (g/g = −x, Sq = 1,
β = 5 and Gbh = 10 and 100).

if the squirming motion is strong compared with the background shear flow and the
orientation vector of the squirmer is in the x > 0, y < 0 quadrant.

The effect of c on the normal stress difference coefficients, which are non-
dimensionalized by using µ/γ̇ , are shown in figure 25. It is found that the suspension
of bottom-heavy squirmers shows considerable normal stress differences. The sign
and the strength of normal stress differences are dependent on the orientation of
squirmers, so they are influenced mainly by the gravitational direction, Gbh and sign
of β . The rheological effect for bottom-heavy squirmers is, therefore, mainly due to
the intrinsic stresslets on the aligned individual squirmers in a semi-dilute regime.

4.2. Gravity is taken parallel to − y

In this section gravity is taken in the − y-direction and the three-dimensional motion
of 64 identical bottom-heavy squirmers is again computed in a simple shear flow field,
which is now horizontal and varies with the vertical coordinate. The results for the
particle bulk stress are completely different from those of § 4.1.

Firstly the effect of Gbh on the orientation of squirmers is shown in figure 26 in
terms of the normalized angular probability density p′(θy) defined by (4.1). When
Gbh = 3 the p′(θy) distribution is almost isotropic, but again, as Gbh is increased, the
squirmers increasingly show a preferred direction. Their average orientation vectors
shift towards the y-axis as Gbh is increased, and the peak of p′(θy) increases. These
tendencies are quite similar to those shown in figure 14.

The effect of Gbh on the particle stress component Hxy is shown in figure 27 (c = 0.1,
Sq =1 and β = 5), in which we also show three kinds of contributions to the total
stress: (i) the stress due to the background shearing motion (including the repulsive
interactive force contribution), (ii) the stress due to the squirming motion, and (iii)
the stress due to the bottom-heaviness. We see that the symmetric part becomes much
larger than the inert sphere value of 12.8, and the Gbh = 30 case shows the largest
value of the four cases computed. These results are almost the opposite of the results
of figure 15, for which the gravitational direction was parallel to −x. This can be
explained by considering the orientation distributions shown in figure 26. If Gbh is
so large that a solitary squirmer swims in the y-direction, the (x,y)-component of the
stresslet given by (1.4) is zero. However, Hxy should be large because the squirmer
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(a) First normal stress difference, (b) second normal stress difference.

swims across the shear. If Gbh is so small that a solitary squirmer swims with the
constant background vorticity, the (x,y)-component of the time-averaged stresslet is
zero because the squirmer stresslet is isotropic. The (x,y)-component of the stresslet
given by (1.4) is positive when exey is positive, and it has its maximum value when

e = (±1/
√

2, ±1/
√

2, 0), which corresponds to θy = π/4. If the squirmer swims across
the shear, the Hxy becomes larger than the stresslet given by (1.4). Consequently, the
π/2 radian rotation of the gravitational direction in the x,y-plane induces almost
the opposite effect of squirming on the symmetric part of Hxy . The asymmetric part
increases with increasing Gbh , and this tendency is the same as in figure 15. This is
because the asymmetric part is generated by the torques due to the bottom-heaviness,
and the direction of the squirmer-averaged torque does not change even though the
gravitational direction is changed in the x,y-plane, provided that the background
vorticity is invariant.
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Figure 28. The effect of Gbh on the normal particle stress differences (g/g = − y, c = 0.1,
Sq = 1 and β = 5). Where ‘Shearing’ indicates the stress due to the shearing motion, ‘squirming’
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bottom-heaviness, and ‘total stress’ is the sum of these three.

The effect of Gbh on normal stress differences is shown in figure 28 (c =0.1, Sq = 1
and β = 5) The individual contributions to the total stress are shown as well. It is
found that the first normal stress difference is negative and the second normal stress
difference is positive when Gbh is large. These tendencies are also different from those
shown in figure 16, in which the first normal stress difference is positive and the second
normal stress difference is almost zero when Gbh is large. This can be explained as
follows. If the orientation vector of a solitary squirmer is in the y-direction, Syy is
equal to −2Sxx and −2Szz as given by (1.4). The first normal stress difference defined
by Sxx − Syy , in this case, is negative and the second normal stress difference defined
by Syy − Szz is positive. The dominant normal stress in this case is Syy instead of Sxx .
Thus both normal stresses of the particle bulk stress are generated, but with opposite
sign. Consequently, the π/2 radian rotation of the gravitational direction from the
x-axis induces the opposite effect of squirming on the first normal stress difference
and has the new effect of generating a large second normal stress difference. Thus
the rheological effect for bottom-heavy squirmers is again explained by the intrinsic
stresslets on the aligned individual squirmers.

Next the effect of Sq on the particle stress component Hxy is shown in figure 29
(c = 0.1, Gbh = 10 and 100, and β = 5). Since the gravitational direction is − y, the
squirming motion has the effect of increasing the symmetric part of Hxy . Since the
effect of squirming increases with increasing Sq, the symmetric part also increases
with Sq. In addition, we see that the asymmetric part of Hxy increases with increasing
Sq as well, which is a similar tendency to that in figure 18. The effect of Sq on
normal stress differences is shown in figure 30 (c = 0.1, Gbh =10 and 100, and β = 5).
It is found that the absolute values of both normal stress differences increase with
increasing Sq. A similar tendency was found in figure 19, though the sign of the first
normal stress difference is opposite and the second normal stress difference is newly
generated in this case.

The effect of β on the particle stress component Hxy is shown in figure 31 (c = 0.1,
Sq = 1 and Gbh = 10 and 100). We see that the symmetric part increases with increasing
β , because the stresslet for a solitary squirmer is proportional to the second mode
squirming as given by (1.4). The asymmetric part is not significantly influenced by
β in this case. The effect of β on normal stress differences is shown in figure 32
(c = 0.1, Sq =1 and Gbh = 10 and 100). It is found that large normal stress differences
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Figure 30. The effect of Sq on the normal particle stress differences (g/g = − y, c = 0.1,
Gbh = 10 and 100, and β = 5).

appear in the case of Gbh =100 and their absolute values increase with increasing β:
This is because the stresslet due to squirming increases with |β| as given by (1.4).
Basically β and Sq enhance the squirming effect on the particle bulk stress, whatever
the gravitational direction and Gbh . The main properties of the particle bulk stress,
such as the sign of its components, are principally dominated by the gravitational
direction, Gbh and sign of β .

Lastly the effect of c on the dimensionless apparent viscosities, defined by (4.4), is
shown in figure 33 under the conditions of Sq =1, Gbh = 10 and 100, and β =5. The
equation (3.4) with k = 5.0 is shown in the figure as well. It is found that all apparent
viscosities are larger than given by equation (3.4) with k = 5.0, and the difference
increases with increasing Gbh and c. For a horizontal shear flow, the apparent viscosity
of the suspension of bottom-heavy squirmers is larger than that of a suspension of
inert spheres. This result is completely different from that shown in figure 24 for a
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Figure 32. The effect of β on the normal particle stress differences (g/g = − y, c = 0.1,
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vertical shear flow. It follows from the tendency of the squirmers to swim upwards,
across the shear flow streamlines. The effect of c on the dimensionless normal stress
difference coefficients, which are defined by (4.5), are shown in figure 34. It is found
that a suspension of bottom-heavy squirmers shows considerable first and second
normal stress differences. The first normal stress difference coefficient is opposite in
sign to the results shown in figure 25, and the large second normal stress difference
is generated in this case. The rheology of a suspension of bottom-heavy squirmers is,
therefore, strongly influenced by the gravitational direction, Gbh and sign of β .

4.3. Gravity is taken parallel to −z

When gravity is taken in the −z-direction, so that the shear flow is horizontal and
does not vary with the vertical coordinate, the effect of squirming on the rheology of
the suspension is rather small compared with the cases already considered. Assuming
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Figure 34. Change of the normal stress difference coefficients with c (g/g = − y, Sq = 1,
β = 5 and Gbh = 10 and 100).

a solitary squirmer oriented in the z-direction, the stresslet due to the squirming
motion satisfies Sxy = Syz = 0 and Szz = −2Sxx = −2Syy as given by (1.4). Therefore,
the apparent viscosity of a dilute suspension of those squirmers is equal to that of
inert spheres in this case. The first normal stress difference of the dilute suspension
of the squirmers is zero, which is again the same as in the inert sphere case. However,
there is one major difference: the second normal stress difference, which does appear,
and its strength can be calculated from (1.4).

In the case of a semi-dilute suspension, the orientation vectors of squirmers are
not exactly parallel to the z-axis because of the hydrodynamic interaction. The effect
of Gbh on the orientation of squirmers is shown in figure 35, where the normalized
angular probability density p′(θz) defined by (4.1) is plotted. The results for bottom-
heavy inert spheres, which corresponds to Sq = 0, are shown in the figure as well (G′

bh

is defined using aγ̇ as a characteristic velocity in (2.11)). It is found that the angular
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probability has its maximum value at θz = 0 in all cases, which means the squirmers
and spheres are swimming or are orientated in the z-direction on average. The peak in
the figure is decreased by the hydrodynamic interaction due to the squirming motion,
but there is no deviation of the peak from the z-axis. When the orientation vectors
are in the z-direction on average, the former discussion about a solitary squirmer
orientated in the z-direction is still useful for a rough estimate of the suspension
rheology. The results are straightforward, and are therefore omitted from this paper.

5. Summary and discussion
In this paper a micro-organism is modelled as a squirming sphere with prescribed

tangential surface velocity, in which the centre of mass of the sphere may be displaced
from the geometric centre (bottom-heaviness). The effects of inertia and Brownian
motion are neglected. The three-dimensional motion of 64 identical squirmers in a
simple shear flow field, and contained in a cube with periodic boundary conditions,
is computed, and the rheological properties of a semi-dilute suspension of squirmers
are investigated.

Whether or not a squirmer has bottom-heaviness generates essential differences in
the rheology. In the case of non-bottom-heavy squirmers, the stresslet generated by the
squirming motion is isotropic and there is no direct contribution to the bulk stress.
The squirming motion does affect the probability density distribution, which indirectly
changes the bulk stress slightly. The apparent viscosity of a semi-dilute suspension
of non-bottom-heavy squirmers is slightly smaller than that of inert spheres, and
has a value very close to that given by (3.4) with k = 5.0 when Sq = 1 and β =5.
This result indicates that the effects of squirming motion and of Brownian motion
on the apparent viscosity are similar. This is because both motions have the effect
of preventing two particles from swimming (or moving) as a pair, though two inert
spheres in a shear flow exhibit an infinite region of closed trajectories. In the case
of strong Brownian motion, we can assume a homogeneous distribution of particles.
The distribution is not homogeneous in the case of squirmers, so the effects of the
two motions are not exactly the same.
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A suspension of Brownian spheres generates an isotropic bulk stress, so it is very
different from a suspension of bottom-heavy squirmers. In this case, the stresslet
generated by the squirming motion is no longer isotropic and the squirming motion
generates a strong direct contribution to the bulk stress at O(c). When the gravitational
direction is in the −x-direction, while the background simple shear flow is in the x,y-
plane, i.e. it is directed vertically, the apparent viscosity of the semi-dilute suspension
of bottom-heavy squirmers becomes smaller than that of inert spheres. Moreover, it
can even become smaller than the viscosity of the solvent fluid. It is also found that the
suspension shows a considerable first normal stress difference. When the gravitational
direction is in the − y-direction, i.e. the shear flow is horizontal but varies vertically,
the effect of squirming on the particle bulk stress is completely different from the
previous case. The change in the gravitational direction induces the opposite effect of
the squirming stresslet on Hxy , and hence increases the apparent viscosity. The first
normal stress difference of the particle bulk stress has the opposite sign from the
case with g/g = −x, and a substantial second normal stress difference appears when
g/g = − y. In both cases, the parameters β and Sq enhance the effect of squirming
on the particle bulk stress. The basic properties of the particle bulk stress, such as
the sign of its components, are mainly dominated by the gravitational direction, Gbh

and sign of β . When the gravitational direction is in the −z-direction, the effect of
squirming on the rheology of the suspension is small, except for the second normal
stress difference. Roughly speaking, however, the rheological effect for bottom-heavy
squirmers is not due to cell–cell interactions, but due to the intrinsic stresslets on the
aligned individual squirmers.

It is possible to compare the average velocity vectors of bottom-heavy squirmers
with Kessler’s (1986a) experiments using vertical pipe flow. The present numerical
results show a tendency similar to the experiments: the squirmers are moving towards
lower values of the upflow velocity. The average velocity vectors vary with parameters
Gbh , Sq, β and c, but all the results obtained in this paper show similar tendencies.
We may note that an individual cell (or squirmer) will tumble if the horizontal
component of background vorticity is strong enough, but will still swim towards the
region of minimum upflow on average (Kessler 1986a; Pedley & Kessler 1990). In
the case of a solitary squirmer, it tumbles if G′

bh < 4π, which includes the case with
Gbh =10 and Sq = 1. In such cases, the lengths of the average velocity vectors are
much shorter than one, because some of the squirmers tumble and their orientation
has a wide distribution. The migration of cells may not appear if the cells’ diffusive
swimming motion, due to the tumbling and the hydrodynamic interaction between
cells, overwhelms the average swimming motion of cells.

In this paper, we investigate rheological properties only in a simple shear flow. It
would be more convenient if we could calculate the particle stress tensor in a general
linear flow field, but we have not succeeded yet. A future step towards that goal will
be to investigate an extensional flow, which is a well-known standard flow field. For
isolated squirmers in an extensional flow field, the suspension rheology is very simple.
There is no background vorticity in an extensional flow, so a non-bottom-heavy
squirmer does not change its orientation with time, and a bottom-heavy squirmer
orients itself upwards after a long enough time. The stresslet of a solitary squirmer
with a certain orientation vector can be calculated from (1.4). In the case of a
semi-dilute suspension of non-bottom-heavy squirmers, the stresslet generated by the
squirming motion is isotropic, and it indirectly changes the bulk stress slightly. Inert
spheres in an extensional flow have no closed trajectories, so we cannot tell from this
study whether the squirming motion will reduce or increase the probability density
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Figure 36. The shear viscosity for a suspension of rigid spheres placed on a simple cubic
lattice. ‘Present results’ indicates the results obtained by the present numerical method using 64
spheres, and ‘exact solution’ indicates the exact solution obtained by Nunan & Keller (1984)
considering the interaction between an infinite number of spheres.

in the near field, and whether it decreases or increases the extensional viscosity.
In the case of a semi-dilute suspension of bottom-heavy squirmers, most of the
squirmers will tend to orientate upwards because of the absence of background
vorticity. The particle stress tensor is strongly dependent on the orientation, and the
extensional viscosity is also strongly dependent on the relative direction of gravity
to the extensional direction. The hydrodynamic interaction between cells tends to
disperse the orientations of cells and to modify equation (1.4) for the stresslet. By
increasing the interaction, i.e. increasing c or |β|, the non-Newtonian effects may
be decreased, because the stresslet becomes more isotropic. The overall tendency in
the case of an extensional flow is different from that of a shear flow, because of the
difference in background vorticity, which will be a dominant factor in considering
the rheology of cell suspensions.

T. I. was supported by a JSPS postdoctoral fellowship for research abroad from
2003 to 2005.

Appendix A. Comparison with the exact solution for the shear viscosity of a
periodic suspension

The aim of this appendix is to clarify the reliability of the present numerical method
by comparing with the exact solution for the shear viscosity of a periodic suspension.
The results of the shear viscosity for a suspension of rigid spheres placed on a simple
cubic lattice is shown in figure 36, where ‘present results’ indicates the results obtained
by the present numerical method using 64 spheres, and ‘exact solution’ indicates the
exact solution obtained by Nunan & Keller (1984) considering the interaction between
an infinite number of spheres. We see that the two results correspond well in the
semi-dilute regime.
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Figure 37. The apparent viscosity of a suspension of rigid spheres with the hard sphere
distribution. ‘Present results’ indicates the viscosity calculated by the present numerical method.
Batchelor’s analytical solution is also shown.

Appendix B. Stresses in the case of the hard sphere distribution
The aim of this appendix is to show the stresses in a well-known microstructure,

from which we expect that readers can have a feeling for the relative magnitude of
the various contributions to the total stress. We use the hard sphere distribution here,
because it is a well-known and easily reproducible microstructure. We performed the
Monte Carlo simulations with 64 particles and 300 realizations, in which particles
were laid down one by one, but a particle was removed if it overlapped an older
particle. The stress components can be calculated by the present numerical method,
and averaged over all realizations.

Figure 37 shows the apparent viscosity of a suspension of rigid spheres with the
hard sphere distribution under a simple shear flow condition. Batchelor’s analytical
solution is also shown in the figure. We see that the present results show good
agreement with Batchelor’s analytical solution for c � 0.1.
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